
END TERM Examination(Model Test Paper)

Fourth Semester[B.Tech]

Paper Code: ETCS - 212 Subject: Operating System

Time: 3 hrs Maximum Marks: 75

Note: Q.No.1 is compulsory. Attempt any four questions of remaining

Q1. Answer the following questions in brief . :- [5x5]

a.) Give the difference between multiprogramming and multiprocessing.

A multiprocessing system is a computer hardware configuration that includes more than one

independent processing unit. The term multiprocessing is generally used to refer to large

computer hardware complexes found in major scientific or commercial applications. The

multiprocessor system is characterized by-increased system throughput and application speedup-

parallel processing. The main feature of this architecture is to provide high speed at low cost in

comparison to uni- processor.

A multiprogramming operating system is system that allows more than one active user

program (or part of user program) to be stored in main memory simultaneously. Multi

programmed operating systems are fairly sophisticated. All the jobs that enter the system are kept

in the job pool. This pool consists of all processes residing on mass storage awaiting allocation of

main memory. If several jobs are ready to be brought into memory, and there is not enough room

for all of them, then the system must choose among them. A time-sharing system is a

multiprogramming system.

b.) Write down different system calls for performing different kinds of tasks.

A system call is a request made by any program to the operating system for performing tasks --

picked from a predefined set -- which the said program does not have required permissions to

execute in its own flow of execution. System calls provide the interface between a process and

the operating system. Most operations interacting with the system require permissions not

available to a user level process, e.g. I/O performed with a device present on the system or any

form of communication with other processes requires the use of system calls. The main types of

system calls are as follows:

• Process Control: These types of system calls are used to control the processes. Some examples

are end, abort, load, execute, create process, terminate process etc.

• File Management: These types of system calls are used to manage files. Some examples are

Create file, delete file, open, close, read, write etc.

• Device Management: These types of system calls are used to manage devices. Some examples

are Request device, release device, read, write, get device attributes etc.

c.) Differentiate between pre-emptive and non-pre-emptive scheduling.

In a pre-emptive scheduling approach, CPU can be taken away from a process if there is a need

while in a non-pre-emptive approach if once a process has been given the CPU, the CPU cannot

be taken away from that process, unless the process completes or leaves the CPU for performing

an Input Output. Pre-emptive scheduling is more useful in high priority process which requires

immediate response, for example in real time system. While in non-preemptive systems, jobs

are made to wait by longer jobs, but treatment of all processes is fairer.

d.) What is a semaphore? Explain busy waiting semaphores.

A semaphore is a protected variable or abstract data type which constitutes the classic method

for restricting access to shared resources such as shared memory in a parallel programming

environment

Weak, Busy-wait Semaphores:

• The simplest way to implement semaphores.

• Useful when critical sections last for a short time, or we have lots of CPUs.

• S initialized to positive value (to allow someone in at the beginning).

• S is an integer variable that, apart from initialization, can only be accessed through 2

atomic and mutually exclusive operations:

wait(s):

 while (s.value != 0);

 s.value--;

signal(s):

s.value++;

All happens atomically i.e. wrap pre and post protocols.

e.) What are the four necessary conditions of deadlock prevention?

Four necessary conditions for deadlock prevention:

1. Removing the mutual exclusion condition means that no process may have exclusive

access to a resource. This proves impossible for resources that cannot be spooled, and

even with spooled resources deadlock could still occur. Algorithms that avoid mutual

exclusion are called non-blocking synchronization algorithms.

2. The "hold and wait" conditions may be removed by requiring processes to request all the

resources they will need before starting up. Another way is to require processes to release

all their resources before requesting all the resources they will need.

3. A "no preemption" (lockout) condition may also be difficult or impossible to avoid as a

process has to be able to have a resource for a certain amount of time, or the processing

outcome may be inconsistent or thrashing may occur. However, inability to enforce

preemption may interfere with a priority algorithm. Algorithms that allow preemption

include lock-free and wait-free algorithms and optimistic concurrency control.

4. The circular wait condition: Algorithms that avoid circular waits include "disable

interrupts during critical sections", and "use a hierarchy to determine a partial ordering of

resources" and Dijkstra's solution.

Q.2)

a) Consider the following page reference string: (6.5)

1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6, 3, 2, 1, 2, 3, 6.

How many page faults would occur for the following replacement algorithms, assuming one, two,

three, four, five, six, or seven frames? Remember all frames are initially empty, so your first

unique pages will all cost one fault each.

• LRU replacement

• FIFO replacement

• Optimal replacement

Ans:

b) (i) What is the cause of thrashing? How does the system detect thrashing? Once it

detects thrashing, what can the system do to eliminate this problem?

 (3)

Ans: Thrashing is caused by under allocation of the minimum number of pages required by a

process, forcing it to continuously page fault. The system can detect thrashing by evaluating the

level of CPU utilization as compared to the level of multiprogramming. It can be eliminated by

reducing the level of multiprogramming.

(ii) Under what circumstances do page faults occur? Describe the actions taken by the

operating system when a page fault occurs. (3)

Ans: A page fault occurs when an access to a page that has not been brought into main memory

takes place. The operating system verifies the memory access, aborting the program if it is

invalid. If it is valid, a free frame is located and I/O is requested to read the needed page into the

free frame. Upon completion of I/O, the process table and page table are updated and the

instruction is restarted.

Q3) a) Categorize the CPU scheduling algorithms? Explain non-pre-emptive

algorithms? (6)

Ans: The various CPU scheduling algorithms are classified as follows:

CPU scheduling algorithms

Preemptive Algorithms • Round Robin

• SRF

• Priority

Non-Preemptive Algorithms • FCFS

• SJF

• Priority

Non preemptive algorithms: In this method a job is given to CPU for execution as long as the job

is non completed the CPU cannot be given to other processes.

There are three types of non preemptive algorithms.

• First-come-first-serve (FCFS): This is simplest CPU scheduling algorithm . With this

scheme, the process that requests the CPU at first is given to the CPU at first. The

implementation of FCFS is easily managed by with a FIFO queue.

• Shortest-job-first (SJF): This is also called SPN (shortest process next). In this the burst

times of all the jobs which are waiting in the queue are compared. The job which is

having the least CPU execution time will be given to the processor at first. In this

turnaround time and waiting times are least. This also suffers with starvation. Indefinite

waiting time is called as starvation. It is complex than FCFS.

• Priority: In this algorithm every job is associated with CPU execution time, arrival time

and the priority. Here the job which is having the higher priority will be given to the

execution at first. This also suffers with starvation. And by using aging technique

starvation effect may be reduced.

b) CPU burst time indicates the time, the process needs the CPU. The following are the

set of processes with their respective CPU burst time (in milliseconds). (6.5)

Calculate the average waiting time if the process arrived in the following order:

(i) P1, P2 & P3

(ii) P2, P3 & P1

Ans:

i)

ii)

Q4) Consider the following system snapshot using data structures in the Banker’s

algorithm, with resources A, B, C, and D, and process P0 to P4 (12.5)

Using Banker’s algorithm, answer the following questions.

(i) How many resources of type A, B, C, and D are there? (2)

(ii) What are the contents of the Need matrix? (2.5)

(iii) Is the system in a safe state? Why (3)

(iv) If a request from process P4 arrives for additional resources of (1,2,0,0,), can the

Banker’s algorithm grant the request immediately? Show the new system state and

other criteria. (5)

Ans:

(i) A-9; B-13;C-10;D-11

(ii)

 (iii) The system is in a safe state as the processes can be finished in the sequence P0, P2, P4,

 P1 and P3.

 (iv) If a request from process P4 arrives for additional resources of (1,2,0,0,), and if this request

 is granted, the new system state would be tabulated as follows.

After PO completes P3 can be allocated. 1020 from released 6012 and available 2011(Total 80

23) and <Po, P3, P4, P2, P1> is a safe sequence.

Q.5) a) What do you mean by a critical section? Using semaphores , write a solution to

readers and writers problem that gives priority to readers.

Ans. Critical section is the execution part of any process. any process can only enter its critical

section when any other process is not executing in its critical section. No two processes should

execute their critical section simultaneously to avoid deadlock.

1. Deadlock prevention(explain in detail)

2. Deadlock avoidance(explain in detail)

3. Deadlock detection and recovery(explain in detail)

4.

The readers/writers problem:

A data object is to be shared among various concurrent processes some of these may want only to

read the content of the object, while others may want to update the shared the shared object the

former set of processes is called readers whereas the later is called the writers.

The above synchronization is called readers / writers problem. The first solution requires that no

reader is kept waiting unless a writer has already have obtained permission to use the shared

object. This requirement give priority to reader over writers. The second solution requires that the

writer has a priority over readers and do not wait unless other readers or writers have already

obtained permission to use the shared object.

Semaphore mutex, wrt;

Intreadcount;

Reader:

Wait(mutex)

Readcount++;

If(readcount== 1) wait(wrt);

//first reader locks semaphore

Signal(mutex);

//Read the data

Wait(mutex);

Readcount--;

If(readcount=0) signal(wrt);

//last reader signals

Signal(mutex);

Writer:

Wait(wrt);

Write the dat;

Signal(wrt);

Q5 (b) Explain the process states by using processes state transition diagram

Ans.

Q6) (a) Explain any 3 allocation schemes that exist for allocating secondary storage to

files.

Ans) There are 3 methods: contiguous, chained & indexed. With contiguous allocation a single

contiguous set of blocks is allocated to a file at the time of file creation. Thus, this is a

reallocation strategy, using variable-size portions. The file allocation table needs just a single

entry for each file, showing the starting block& length of the file . It is best for sequential file

.The some problems in this external fragmentation will occur, it will be necessary to perform a

compaction algorithm to free up additional space on the disk, & also it is necessary to perform a

compaction algorithm to free up additional space on the disk, & also it is necessary to declare the

size of the file at the time of the file at the time of creation. The next method is chained

allocation. Each block contains pointer to the next block in the chain. The file allocation table

needs a single entry for each file, showing the starting block & the length of the file. Although

reallocation is possible , it is more common simply to allocate blocks as needed. Any free block

can be added to a chain.

NO external fragmentation.

Indexed allocation addresses many of the problems of contiguous & chained allocation. In this,

the file allocation table contains a separate 1 level index for each file; the index has 1 entry for

each portion allocated to the file. Typically, the file indexes are not physically stored as part of

the file allocation table, rather in a separate block& the entry for the file in the file allocation table

points to that block. Allocation may be on the basis of either fixed-size blocks or variable-size

portions. Allocation by blocks eliminates external fragmentation, whereas allocation by variable

size portions improves locality. Indexed allocation supports both sequential & direct access to the

file.

Q6(b).What is directory? What are the different ways to implement a directory?

Ans. A directory is a symbol table, which can be searched for information about the files. Also, it

is the fundamental way of organizing files. Usually, a directory is itself a file. A typical directory

entry contains information about a file . Directory entries are added as files are created & are

removed when files are deleted.

Common directory structures are:

 Single-level: shared by all users

 Two-level: one level for each user

 Tree: arbitrary tree for each user

The files & directories at any level are contained in the directory above them. To access a file ,

the names of all the directories above it need to be specified. The topmost directory in any file is

called the root directory. A directory that is below another directory is called a subdirectory. A

directory above a subdirectory is called the parent directory.

Directory implementation:

1. Linear list:

 a linear list is the simplest & easiest directory structure to set up.

 finding a file requires linear search.

 deletions can be done by moving all entries, flagging an entry as deleted or by moving the

last entry into the newly vacant position.

 sorting the list makes searches faster, at the expense of more complex insertions &

deletions

 a linked list makes insertions & deletions into sorted list easier.

2. Hash table:

 a hash table can also be used to speed up searches

 hash table are generally implemented in addition to a linear or other structure

